Linear Algebra
 Vector Space

Page 7

1. Addition

To add two complex numbers, you add their real parts together and their imaginary parts together. The sum of $(a+b i)$ and $(c+d i)$ is:

$$
(a+c)+(b+d) i
$$

Here's the step-by-step process:

- Add the real parts: $a+c$
- Add the imaginary parts: $b+d$
- Combine them into the form of a complex number: real part + imaginary part $\cdot i$

2. Multiplication

To multiply two complex numbers, you use the distributive property (FOIL: First, Outer, Inner, Last), just as you would with binomials. Here's the process:

$$
\begin{aligned}
(a+b i)(c+d i) & =a c+a d i+b c i+b i d i \\
& =a c+a d i+b c i-b d\left(\text { since } i^{2}=-1\right) \\
& =(a c-b d)+(a d+b c) i
\end{aligned}
$$

The product of $(a+b i)$ and $(c+d i)$ is a new complex number whose real part is $(a c-b d)$ and whose imaginary part is $(a d+b c)$.

3. Division

To divide two complex numbers, you multiply the numerator and denominator by the complex conjugate of the denominator. The complex conjugate of $c+d i$ is $c-d i$. This gets rid of the imaginary part in the denominator.

The division is performed as follows:

$$
\begin{aligned}
\frac{a+b i}{c+d i} \cdot \frac{c-d i}{c-d i} & =\frac{(a+b i)(c-d i)}{c^{2}+d^{2}} \\
& =\frac{(a c+b d)+(b c-a d) i}{c^{2}+d^{2}}
\end{aligned}
$$

The complex conjugate was chosen because $(c+d i)(c-d i)=c^{2}-(d i)^{2}=c^{2}-\left(-d^{2}\right)=c^{2}+d^{2}$, which is a real number, thus eliminating the imaginary unit from the denominator.

The result is:

$$
\frac{(a c+b d)}{c^{2}+d^{2}}+\frac{(b c-a d)}{c^{2}+d^{2}} i
$$

Page 16

Let \mathbf{x} be an m-dimensional vector and $\mathbf{1}_{n}$ be an n-dimensional row vector of ones. The matrix $A \in \mathbb{R}^{m \times n}$ represented as the outer product of \mathbf{x} and $\mathbf{1}_{n}$ is given by:

$$
A=\mathbf{x} \mathbf{1}_{n}^{T}=\left[\begin{array}{cccc}
x_{1} & x_{1} & \cdots & x_{1} \\
x_{2} & x_{2} & \cdots & x_{2} \\
\vdots & \vdots & \ddots & \vdots \\
x_{m} & x_{m} & \cdots & x_{m}
\end{array}\right]
$$

Page 22

- Addition + and multiplication \times are binary operations on \mathbb{N}.
- Subtraction - and division / are not always binary operations on \mathbb{N}.

Page 28

To determine if B under these operations is a field, we must check the following properties:

- Closure is satisfied for both addition and multiplication since all operations result in either 0 or 1 .
- Associativity is satisfied for both operations in a set with two elements since there are not enough elements to construct a counterexample.
- Commutativity is shown in the tables as the tables are symmetric about the diagonal.
- Additive Identity: 0 is the additive identity since $0+0=0$ and $0+1=1$.
- Multiplicative Identity: 1 is the multiplicative identity since $1 \times 0=0$ and $1 \times 1=1$.
- Additive Inverse: Each element is its own additive inverse since $0+0=0$ and $1+1=0$.
- Multiplicative Inverse: The element 1 is its own multiplicative inverse. The element 0 does not need a multiplicative inverse since it is the additive identity.
- Distributive Law: To check this, we would need to verify that $a \times(b+c)=(a \times b)+(a \times c)$ for all a, b, and c in B, but this is evident from the tables provided.

Given that all these properties are satisfied by the operations as defined in the tables, $B=\{0,1\}$ under these operations does indeed form a field, specifically the finite field of order 2 , often denoted by \mathbb{F}_{2}.

Page 29

1. \mathbb{R} - The set of real numbers is a field. It satisfies all the properties of a field: closure, associativity, commutativity, and distributivity for both addition and multiplication; there are additive and multiplicative identities (0 and 1 , respectively); and every element has an additive inverse, and every non-zero element has a multiplicative inverse.
2. \mathbb{C} - The set of complex numbers is a field, with all the same properties as the real numbers, extended to include the imaginary unit i, where $i^{2}=-1$.
3. \mathbb{Q} - The set of rational numbers (fractions of integers, excluding division by zero) is a field.
4. \mathbb{Z} - The set of integers is not a field because integers do not have multiplicative inverses within the integers (for example, there is no integer x such that $2 x=1$).
5. W - The set of whole numbers (non-negative integers, including zero) is not a field because, like the integers, they lack multiplicative inverses for any number other than 1 and 0 (and 0 does not have a multiplicative inverse).
6. \mathbb{N} - The set of natural numbers (positive integers) is not a field for the same reasons as the whole numbers and integers: there are no multiplicative inverses within the set for numbers other than 1.
7. $\mathbb{R}^{2 \times 2}$ - This denotes the set of 2×2 matrices with real number entries. This set is not a field because not every non-zero element (matrix) has a multiplicative inverse. For instance, matrices that have a determinant of zero do not have an inverse.
