
Matrix Calculus

Derivative Definition
The simplest form of multivariable differentiation, vector differentiation
generalizes the one-dimensional concept of a derivative to functions with
vector-valued inputs or outputs.

We develop the concept of the gradient by generalizing the limit definition
of the (single-variable) derivative, which is

to functions where the input is a vector.

In the multivariable case, what t → 0 means is less clear, as there are
many directions in which one could approach a point in Rn.

Given a vector d with the same dimension as x, we could consider the limit

which may be thought of as a function of both x and d.

If we want a definition for the multidimensional derivative
dx
df at a given point x, it should not

depend on d.

Examples
• For any n-dimensional vector x,

where In is the n × n identity matrix.

f(x′) =
t→0
lim

t

f(x + t) − f(x)

∇f(x)[d] :=
t→0
lim

t

f(x + td) − f(x)

dx

dx
= In
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Proof: By definition, for any n-dimensional vector d,

We note that
dx
dx = In satisfies the limit definition.

• For any n-dimensional vector x and n × n constant matrix A,

Proof: By definition, for any n-dimensional vector d,

Notation
The notation that we will use may be different from other resources. For more information see
this.

dx

dx
d =

t→0
lim

t

(x + td) − (x)

= d

dx

dxT Ax
= xT (A + AT )

dx

dxT Ax
d =

t→0
lim

t

(x + td)T A(x + td) − xT Ax

=
t→0
lim (dT Ax + xT Ad + tdT Ad)

= dT Ax + xT Ad

= xT AT d + xT Ad

= xT (A + AT )d

https://en.wikipedia.org/wiki/Matrix_calculus#Layout_conventions


Vector-by-scalar
The derivative of a vector y ∈ Rm, by a scalar x is written as:

Scalar-by-vector
The derivative of a scalar y, by a vector x ∈ Rn is written as:

Vector-by-vector
Each of the previous two cases can be considered as an application of the derivative of a
vector with respect to a vector, using a vector of size one appropriately.

The derivative of a vector y ∈ Rm, by a vector x ∈ Rn is written as:

Matrix-by-scalar
The derivative of a matrix Y ∈ Rm×n by a scalar x is given by:
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∂y1

∂x
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Scalar-by-matrix
The derivative of a scalar y by a matrix X ∈ Rm×n is given by:

Gradient
For notational conventions that we use, the gradient of f(x) : Rn → R is the derivative
(some resources use the transpose of the derivative).

Note that the size of ∇xf(x) is always the same as the size of x, but transposed. So if x ∈
Rn, then we have

Hessian
Suppose that f(x) : Rn → R is a function that takes a vector in Rn and returns a real
number. Then the Hessian matrix with respect to x, written ∇x

2f(x) or simply as H is the
n × n matrix of partial derivatives,

In other words, ∇x
2f(x) ∈ Rn×n, with

∂X

∂y
=

∂X11

∂y

∂X12
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∂X1n

∂y

∂X21

∂y

∂X22

∂y

⋮
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∂y

∇f(x) =
∂x

∂f(x)

∇xf(x) = [ ∂x1

∂f(x)
∂x2

∂f(x) ⋯ ∂xn

∂f(x) ]

∇x
2f(x) =
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Note that the Hessian is always symmetric, since

Rules
We will present the product rule and chain rule based on our notational conventions.

Chain rule
We want to generalize the chain rule for single-valued functions, ∂x

∂f(g(x)) = ∂g(x)
∂f(g(x))

∂x

∂g(x) , to

multi-valued functions.

1. Matrix-scalar and scalar-matrix

By the definition, we can easily conclude that for scalars x, u and matrix Y , we have:

, and also for matrix X and scalars y, u:

2. Vector-vector: ∂x
∂y = ∂u

∂y
∂x
∂u

For vectors x ∈ Rn, y ∈ Rm, u ∈ Rl we have:

If yi is a function of vector u =

u1

⋮
ul

, we can write

∂xi∂xj

∂2f(x)
=

∂xj∂xi

∂2f(x)
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∂u
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=
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∂u

(
∂x
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)ij =
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(
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∂u
)kj = (
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∂y
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∂u)
ij



So we can conclude that ∂x
∂y = ∂u

∂y
∂x
∂u .

Product Rule
For single-valued functions f(x), g(x) : R → R we know that

Let's generalize this to multi-valued functions.

1. Matrix-scalar: ∂α
∂AB

If A ∈ Rm×n, B ∈ Rn×l be matrices which elements are functions of scalar α.

2. Scalar-vector: ∂x
∂yT z

If y, z ∈ Rn be vectors which elements are functions of x ∈ Rm.

For example we know that for a matrix A ∈ Rn×n that is not a function of x ∈ Rn, the
derivative ∂x

∂Ax equals A. Because

(f(x) + g(x))
′

= f ′(x)g(x) + f(x)g′(x)

∂α

∂(AB)ij

⇒
∂α

∂(AB)

=
k=1

∑
n

∂α

∂(AikBkj)

=
k=1

∑
n

[Aik ∂α

∂Bkj +
∂α

∂Aik
Bkj]
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∂B
)ij + (
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B)ij
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∂α

∂B
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∂yT z
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∂yizi =
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∂xk

∂yi
zi] = yT (
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∂z
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(
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∂
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∑
n

Aikxk = Aij



So we can compute the derivative below by chain rule:

We know that ∂x
∂x = I so

Examples

Gradients
It follows directly from the equivalent properties of partial derivatives that:

• ∇x(f(x) + g(x)) = ∇xf(x) + ∇xg(x).
• For t ∈ R, ∇x(tf(x)) = t∇xf(x).

1. Linear functions (f(x) = bT x)

For x ∈ Rn, let f(x) = bT x. So:

This should be compared to the analogous situation in single variable calculus, where

∂x
∂ ax = a.

Clearly ∇x
2f(x) = 0.

2. Quadratic functions (f(x) = xT Ax)

Now consider f(x) = xT Ax for A ∈ Sn. So:

∂x

∂(xT Ax)
= xT

∂x

∂(Ax)
+ (Ax)T

∂x

∂x

∂x

∂(xT Ax)
= xT A + (Ax)T = xT (A + AT )

f(x) =
i=1

∑
n

bixi ⇒
∂xk

∂f(x)
= bk ⇒ ∇xf(x) = bT



To compute Hessian we have:

If A is symmetric, then ∇xf(x) = 2xT A and ∇x
2f(x) = 2A, which should be entirely

expected (and again analogous to the single-variable fact that ∂x2
∂2

ax2 = 2a).

3. Least Squares (∣∣Ax − b∣∣2
2)

Suppose we are given matrix A ∈ Rm×n (for simplicity we assume A is full rank) and a
vector b ∈ Rm such that b ∈/ R(A). In this situation we will not be able to find a vector x ∈
Rn, such that Ax = b, so instead we want to find a vector x such that Ax is as close as
possible to b, as measured by the square of the Euclidean norm ∣∣Ax − b∣∣2

2.

Taking the gradient with respect to x we have, and using the properties we derived in the
previous section

Setting this last expression equal to zero and solving for x gives the normal equations

f(x)

⇒
∂xk

∂f(x)

⇒ ∇xf(x)

=
i=1

∑
n

j=1

∑
n

Aijxixj

=
∂xk

∂ [
i=k

∑
j=k

∑ Aijxixj +
i=k

∑ Aikxixk +
j=k

∑ Akjxkxj + Akkxk
2]

=
i=k

∑ Aikxi +
j=k

∑ Akjxj + 2Akkxk

=
i=1

∑
n

Aikxi +
j=1

∑
n

Akjxj

= (AT x)k + (Ax)k

= ((A + AT )x)T = xT (AT + A)

∂xk∂xl

∂2f(x)
=

∂xk

∂f(x)[
i=1

∑
n

(Ail + Ali)xi] = (Akl + Alk)

⇒ ∇x
2f(x) = AT + A

∣∣Ax − b∣∣2
2 = (Ax − b)T (Ax − b)

= xT AT Ax − 2bT Ax + bT b

∇x∣∣Ax − b∣∣2
2 = 2xT AT A − 2bT A



4. Determinant (∣A∣ and log ∣A∣)

Recall from our discussion of determinants that

so

From this it immediately follows from the properties of the adjugate matrix

Now let’s consider the function f : Sn → R, f(A) = log ∣A∣. Note that we have to restrict
the domain of f to be the positive definite matrices, since this ensures that ∣A∣ > 0, so that
the log of ∣A∣ is a real number. In this case we can use the chain rule to see that

From this it should be obvious that

Note the similarity to the single-valued case, where ∂x
∂ log x = 1/x.

5. f(A) = yT Ax

For matrix A ∈ Rm×n:

x = (AT A)−1AT b

∣A∣ =
i=1

∑
n

(−1)i+jAij ∣A\i,\j ∣ (for anyj ∈ 1, … , n)

∂Akl

∂
∣A∣ =

∂Akl

∂

i=1

∑
n

(−1)i+lAil∣A\i,\l∣ = (−1)k+l∣A\k,\l∣ = (adj(A))lk

∇A∣A∣ = adj(A) = ∣A∣A−1

∂Aij

∂ log ∣A∣
=

∂∣A∣
∂ log ∣A∣

∂Aij

∂∣A∣
=

∣A∣
1

∂Aij

∂∣A∣

∇A log ∣A∣ = A−1

∂Akl

∂f(A)

⇒ ∇Af(A)

=
∂Akl

∂

i=1

∑
m

i=1

∑
n

Aijyixj

= ykxl = (xyT )lk

= xyT



Trace
According to trace definition, for a square matrix A ∈ Sn:

We can conclude that:

• ∂tr(X)/∂X = I .
• ∂tr(U + V )/∂X = ∂tr(U)/∂X + ∂tr(V )/∂X .
• ∂tr(αU)/∂X = α∂tr(U)/∂X . a is not a function of X .

1. tr(AX)

For A ∈ Rn×m and X ∈ Rm×n.

Based on this result we can solve part 5 of previous section, differently:

Generally, we have the differential form:

2. tr(XT AX)

The product rule applys to the differential form, and this is the way to derive many of the
identities involving the trace function, combined with the fact that the trace function allows
transposing and cyclic permutation.

tr(A) =
i=1

∑
n

Aii

(AX)kl =
i=1

∑
m

AkiXil

tr(AX) =
k=1

∑
n

i=1

∑
m

AkiXik = tr(XA)

∂Xij

∂
tr(AX) = Aji ⇒

∂X

∂
tr(AX) = A

f(A) = yT Ax = tr(yT Ax) = tr(xyT A) ⇒
∂A

∂f(A)
= xyT

∂f = tr(A∂X) ⇒
∂X

∂f
= A



3. yT A−1x

To compute ∂(A−1), we use the definition of inverse of matrix:

Now, we continue:

Some resources may use a different definition for scalar-by-matrix derivative. See this for its
reason.

4. tr(BA−1)

5. Jacobi's formula

In matrix calculus, Jacobi's formula expresses the derivative of the determinant of a matrix A

in terms of the adjugate of A and the derivative of A.

∂tr(XT AX)

⇒
∂X

∂tr(XT AX)

= tr(∂(XT AX))

= tr(∂(XT )AX) + tr(XT ∂(AX))

= tr((XT AT ∂(XT )T )T ) + tr(XT A∂(X))

= XT (A + AT )

yT A−1x = ∂tr(yT A−1x) = tr(xyT ∂(A−1))

A−1A

∂(A−1A) = ∂I

A−1∂(A) + ∂(A−1)A

⇒ ∂(A−1)

= I

= 0

= 0

= −A−1∂(A)A−1

tr(xyT ∂(A−1)) = tr(−xyT A−1∂(A)A−1)

= −tr(A−1xyT A−1∂(A)) ⇒
∂X

∂tr(yT A−1x)
= −A−1xyT A−1

∂tr(BA−1)

⇒
∂A

∂tr(BA−1)

= tr(B∂(A−1)) = tr(−BA−1∂(A)A−1)

= −tr(A−1BA−1∂(A))

= −A−1BA−1

https://math.stackexchange.com/questions/3250580/gradient-of-scalar-field-at-x-1-b
https://en.wikipedia.org/wiki/Matrix_calculus#Layout_conventions
https://en.wikipedia.org/wiki/Jacobi%27s_formula#Derivation


To proof this, we know that ∣A∣ is a function of
A11, A12, … , A1n, A21, A22, … , A2n, … , Ann, so we can write

We already know that ∂Aij

∂∣A∣ = (adj(A))ji. So

By the definition of the trace, we can rewirte the above equation

By the definition of the Adjugate matrix, adj(A) = ∣A∣A−1, so
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dt

d
det A(t) = tr(adj(A(t))

dt
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